Ionic Compounds

Essential Standard 2.2 Understand chemical bonding and chemical interactions.

Learning Objective 2.2.2

Predict chemical formulas and names for simple compounds based on knowledge of bond formation and naming conventions.

Can Statements

At the end of this lesson, you should be able to say, with confidence:

- I can write chemical formulas for binary ionic compounds and polyatomic ionic compounds
- I can name a binary compound and a polyatomic ionic compound given its chemical formula

Ionic Bonds

Recall that ionic compounds are formed when electrons are transferred from a metal atom to non-metal atoms and the <u>oppositely charged ions</u> form an <u>ionic bond</u>.

lonic Compounds Compounds formed by ionic bonds are called <u>ionic compounds</u> and have different properties than their individual atoms.

Explosive Metal Ionic bonding in sodium chloride (NaCl)

Table Salt

Poisonous Gas

Properties of Ionic Compounds Ionic compounds form <u>crystals</u>

Sodium Chloride

KC

Potassium Chloride

Properties of lonic Compounds Ionic compounds <u>high melting</u> and <u>boiling points</u> Sodium Chloride's Melting Point = 801°C

This property allows us to separate the compounds out of water mixtures during distillation.

Sodium Chloride's Boiling Point = 1413°C

Properties of Ionic Compounds Ionic compounds <u>dissolve</u> easily in <u>water</u>.

Because the individual ions have a charge, they are attracted the charges in the water molecule and are easily separated or dissolved. **Intersection Compounds** When ionic compounds dissolve in water, the charged ions can <u>conduct electricity</u> and are called <u>electrolytes</u>.

Electrolytes Electrolytes are <u>vital</u> to human <u>health</u>.

Na+ and K+ ions are behind nerve signals.

Ca+ ions cause your heart to pump blood and helps your heart maintain a rhythm.

Chemical Formulas

<u>Chemical formulas</u> are used to express they <u>type</u> of atoms and <u>amount</u> of individual <u>atoms</u> are present in a compound.

1 Na atom

1 Cl atom

Subscripts

<u>Subscripts</u>, written after the element, identify the <u>amount</u> of atoms there are of each element.

H₂O 2 Hydrogen atoms 1 Oxygen atom

The number 1 is not written in chemical formulas.

Familiar CompoundsSandCane SugarLimestoneSiO2C12H22O11CaO3

3 atoms

45 atoms

4 atoms

Parentheses

Some compounds have groups of atoms that always stay together and are placed inside parentheses with a subscript outside the parentheses. (NH₄)₃PO₄ The subscript 3 tells us that there are three

(NH₄) groups in this compound.

(NH4) (NH4) (NH4) PO4

Parentheses

Multiply each atom in parenthesis by the subscript outside of the parenthesis.

(NH4)3PO4

3 Nitrogen atoms
12 Hydrogen atoms
1 Phosphorus atom
4 Oxygen atoms

Writing Formulas **Binary ionic compounds** NaCl have only two types of ions. Even though the ions carry a charge, the Na⁺¹ Cl⁻¹ compounds themselves, are <u>neutral</u>.

Therefore, the number of negative ions must equal the number of positive ions.

1(Na⁺¹) 1(Cl⁻¹)

Formula Writing Rules

 Write the symbol and positive oxidation numbered element first (metal)

Magnesium Nitride

Formula Writing Rules

2. Write the symbol of the element that has the negative oxidation number (non-metal)

Magnesium Nitride Mg⁺² N⁻³

Formula Writing Rules

 Write oxidation numbers of each element, without the charge, as the subscript for the other element. (Criss Cross)

> Magnesium Nitride Mg^{+2} N^{-3} $Mg_{3}N_{2}$

Formula Writing Rules Once this is done, the compound will have the same amount of positive ions and negative ions. **Magnesium Nitride** Mg⁺² **N-3** Mg_3N_2 3(+2) = +62(-3) = -6

Writing Names1. Write the full name of the positive ion

NaCl

Sodium

2. Write the root name of the negative ion

NaCl Sodium Chlor

Writing Names

3. Add the ending ide to the root

Sodium Chloride

Practice

BaF₂ Al₂O₃ Barium Fluoride Aluminum Oxide

Endings for Non-Metals

Nitride Phosphide Oxide Sulfide Fluoride Chloride Bromide lodide

The End

