

Matter

Matter is anything that has mass and takes up space.

Photo of Silicon Atoms

Sample of Silicon

All matter is made up of atoms.

Mass is a measurement of the amount of matter there is in an object.
(Amount \& type of atoms present)

Volume

Volume is the amount of space that an object occupies.

Mass and Volume

Two substance or objects can have the same volume but have different masses.

1 bowling ball has the same mass as 18 basketballs.

Different Masses?

The type of atoms in the basketball have less mass than the type of atoms in the bowling ball.

Basketball - Nitrogen 14 amu

Different Masses?

One of the many elements that make up the core of a bowling ball is bismuth, which is added to give a bowling ball greater mass.

Bismuth 209 amu

Mass and Volume

Because the volume is the same but the masses are different, the basketball and bowling ball have different densities.

Defining Density

Density is the mass per unit of volume of a substance or object present within a given amount of space.

Density of Water

1 gram of pure water has a volume of 1 cubic centimeter or 1 mL of water. Therefore, Water has a density of 1 $\mathrm{g} / \mathrm{cm}^{3}$ or $1 \mathrm{~g} / \mathrm{mL}$.

Density $=1 \mathrm{~g}=1 \mathrm{~g} / \mathrm{cm}^{3}$
 $1 \mathrm{~cm}^{3}$

Sink or Float?

Objects with a density less than 1 $\mathrm{g} / \mathrm{cm}^{3}$ or $1 \mathrm{~g} / \mathrm{mL}$ will float.

CORK

Objects with a density greater than $1 \mathrm{~g} / \mathrm{cm}^{3}$ or g / mL will sink.

Salt Water

Pure water consists of just water molecules.

The average density of ocean water ranges between $1.02 \mathrm{~g} / \mathrm{cm}^{3}$ and $1.03 \mathrm{~g} / \mathrm{cm}^{3}$.

The higher density of saltwater makes it easier for large animals to float and move about.

Unique Densities Most substances have a unique density.

Pyrite
$5.01 \mathrm{~g} / \mathrm{cm}^{3}$

Gold
 $19.3 \mathrm{~g} / \mathrm{cm}^{3}$

Calculating Density

 We can calculate the density of any substance or object by dividing its mass by its volume.

Scientific Equations

In science, scientific equations show the relationship between various quantities and different symbols are used to represent each quantity.

$$
d=m / v
$$

Symbols

Density = d
Mass = m
Volume $=\mathrm{v}$

Units

Each variable in a scientific equation also has an associated unit that must be included in the answer.

$$
\mathrm{d}=\mathrm{m} / \mathrm{v}
$$

Units

Density $(\mathrm{D})=\mathrm{g} / \mathrm{cm}^{3}$ or g / mL
Mass (m) $=\mathrm{g}$
Volume $(v)=\mathrm{cm}^{3}$ or mL

Example Problem

$0.259 \mathrm{~cm}^{3}$ of gold has a mass of 5 g . What is the density of gold?

$\mathrm{m}=5 \mathrm{~g}$

$\mathrm{V}=0.259 \mathrm{~cm}^{3}$

$\mathrm{d}=\mathrm{m} / \mathrm{v}=5 \mathrm{~g} / 0.259 \mathrm{~cm}^{3}=19.3 \mathrm{~g} / \mathrm{cm}^{3}$

Measuring Density

 We can find the density of any substance or object by measuring the mass and volume and then dividing the mass by the volume.

Measuring Mass

We can use the triple beam balance to measure the mass of any object.

Measuring Liquid Mass We can measure the mass of a liquid by subtracting the mass of the empty container from the mass of the container with the liquid.

| Mass of Beaker
 with Liquid | Mass of Beaker
 without Liquid | $=$Mass of
 the Liquid | |
| :---: | :---: | :---: | :---: | :---: |
| 10 g | $=$ | | |

We can measure the volume of liquids

 using graduated cylinders.

Measuring Cubic Volume

We can measure the volume of a cube using a ruler, then multiplying the length X width X Height.

$2 \mathrm{~cm} \times 2 \mathrm{~cm} \times 2 \mathrm{~cm}$
 $8 \mathrm{~cm}^{3}$

Measuring Irregular Shaped Volume

But how can we measure the volume of an irregular shaped object?

Archimedes Principle

The volume of irregular shaped solids can be measured in graduated cylinders using Archimedes Principal.

Using Archimedes Principle

1. Determine initial volume
2. Add the Object
3. Determine final volume

4. Volume = final volume - initial volume

Initial volume $=200 \mathrm{~mL}$
Final volume $=260 \mathrm{~mL}$
Volume $=260 \mathrm{~mL}-200 \mathrm{~mL}=60 \mathrm{~mL}$

Measuring Density

Measure the mass and volume, using the appropriate technique, then divide the mass by the volume.

The End

