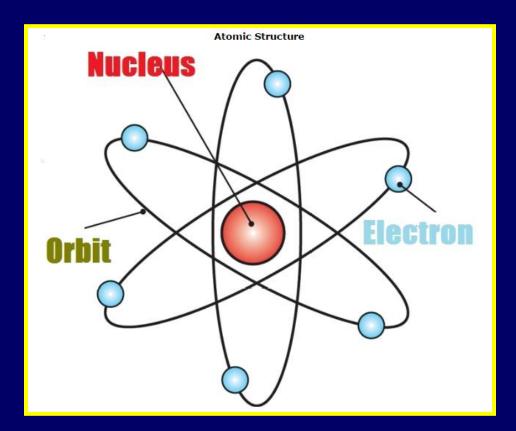
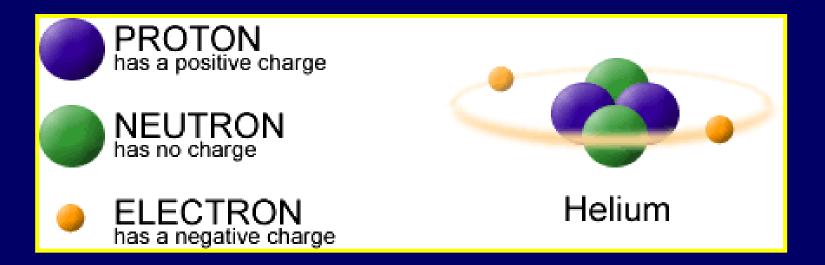

Biochemistry

Clarifying Objective 4.1.1 Compare the structure and functions of the major biological molecules (carbohydrates, proteins, lipids, and nucleic acids).


Everything in the universe is made of matter



The smallest units of matter are called atoms


All atoms consist of a centrally located nucleus with orbiting electrons

Inside the nucleus of each atom, are positively charged protons and neutrally charged neutrons.

The orbiting electrons have a negative charge.

Helium

Lithium

NEUTRON has no charge

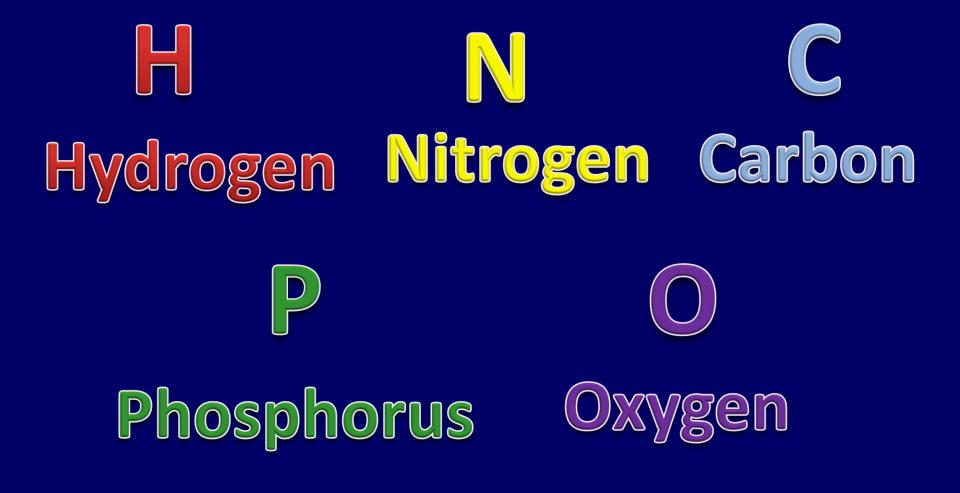
ELECTRON has a negative charge

PROTON has a positive charge

NEUTRON has no charge

ELECTRON has a negative charge numbers of protons. Each different type of atom is called an element.

Different types of

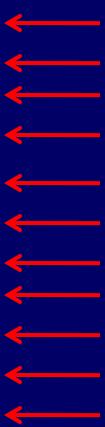

atoms contain different

The number of protons determines which element the atom will be.

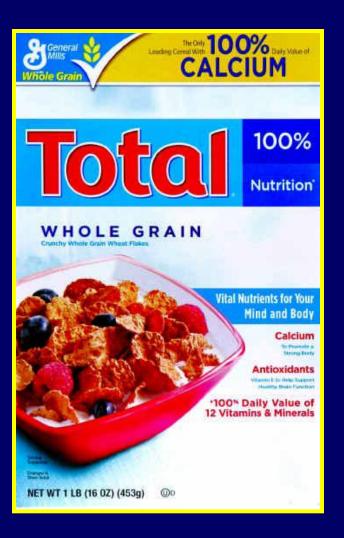
All of the known elements are listed on the periodic table

Periodic Table																		
2	³ Li	Be	of the Elements								5 B	°C	7 N	⁸ O	9 F	¹⁰ Ne		
3	¹¹ Na	¹² Mg	IIIB	IVB	VB	VIB	VIIB		- VII -		IB	IIB	¹³ Al	¹⁴ Si	¹⁵ P	¹⁶ S	¹⁷ CI	¹⁸ Ar
4	¹⁹ K	²⁰ Ca	²¹ Sc	22 Ti	²³ V	²⁴ Cr	²⁵ Mn	²⁶ Fe	27 Co	28 Ni	29 Cu	³⁰ Zn	Ga	Ge	33 As	³⁴ Se	³⁵ Br	³⁶ Kr
5	³⁷ Rb	³⁸ Sr	³⁹	⁴⁰ Zr	41 Nb	42 Mo	43 Tc	⁴⁴ Ru	⁴⁵ Rh	⁴⁶ Pd	47 Ag	⁴⁸ Cd	49 In	50 Sn	51 Sb	52 Te	53 	⁵⁴ Xe
6	⁵⁵ Cs	56 Ba	⁵⁷ *La	⁷² Hf	⁷³ Ta	74 W	75 Re	⁷⁶ Os	77 Ir	⁷⁸ Pt	79 Au	80 Hg	81 TI	⁸² Pb	83 Bi	⁸⁴ Po	⁸⁵ At	⁸⁶ Rn
7	⁸⁷ Fr	⁸⁸ Ra	⁸⁹ +Ac	¹⁰⁴ Rf	¹⁰⁵ Ha	¹⁰⁶ Sg	¹⁰⁷ Ns	¹⁰⁸ Hs	¹⁰⁹ Mt	110 110	111 111	¹¹² 112	¹¹³ 113					
*	Lanth Series	anide	⁵⁸ Ce	⁵⁹ Pr	60 Nd	⁶¹ Pm	62 Sm	Eu	Gd	65 Tb	66 Dy	Но	Er	⁶⁹ Tm	70 Yb	⁷¹ Lu		
+	Actinio Series	de S	⁹⁰ Th	⁹¹ Pa	⁹² U	93 Np	94 Pu	95 Am	⁹⁶ Cm	97 Bk	⁹⁸ Cf	⁹⁹ Es	¹⁰⁰ Fm	¹⁰¹ Md	¹⁰² No	¹⁰³ Lr		

Each element is represented by an abbreviation called a chemical symbol



Of all the elements, only about <u>25</u> are <u>essential</u> to living organisms


Element	% by mass in human body	Element	% by mass in human body	
Oxygen	65%	Iron	trace	
Carbon	18.5%	Zinc	trace	
Hydrogen	9.5%	Copper	trace	
Nitrogen	3.3%	Iodine	trace	
Calcium	1.5%	Manganese	trace	
Phosphorus	1.0%	Boron	trace	
Potassium	0.4%	Chromium	trace	
Sulfur	0.3%	Molybdenum	trace	
Sodium	0.2%	Cobalt	trace	
Chlorine	0.2%	Selenium	trace	
Magnesium	0.1%	Fluorine	trace	

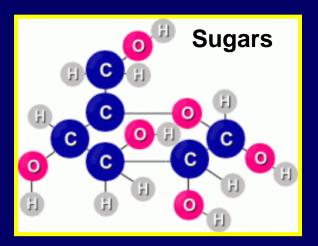
Essential elements that occur in very small amounts are called <u>trace elements</u>

Element	% by mass in human body	Element	% by mass in human body	
Oxygen	65%	Iron	trace	
Carbon	18.5%	Zinc	trace	
Hydrogen	9.5%	Copper	trace	
Nitrogen	3.3%	Iodine	trace	
Calcium	1.5%	Manganese	trace	
Phosphorus	1.0%	Boron	trace	
Potassium	0.4%	Chromium	trace	
Sulfur	0.3%	Molybdenum	trace	
Sodium	0.2%	Cobalt	trace	
Chlorine	0.2%	Selenium	trace	
Magnesium	0.1%	Fluorine	trace	

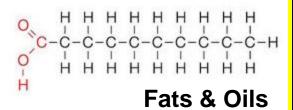
<u>Plants</u> absorb trace elements through their <u>roots</u>, while <u>animals</u> get trace elements from their <u>food</u>.

Serving Size: 3/4 cup (30g) Amount Per Serving Calories 100 Calo

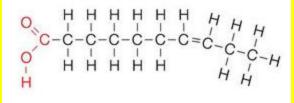
% Dail	y ¥alue*
Total Fat 0.5 g	1%
Saturated Fat 0.12 g	1%
Trans Fat Og	
Cholesterol 0 mg	0%
Sodium 189.9 mg	8%
Potassium 90 mg	3%
Total Carbohydrate 23.15 g	8%
Dietary Fiber 2.7 g	11%
Sugars 5 g	
Sugar Alcohols	
Protein 2g	
Vitamin A 500.1 IU	10%
Vitamin C 60 mg	100%
Calcium 999.9 mg	100%
Iron 18 mg	100%

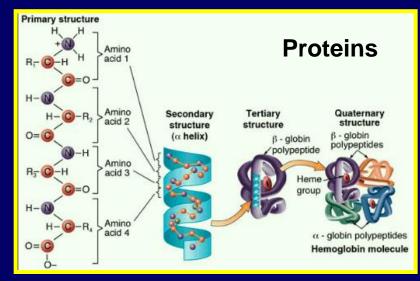

Nutrition Facts

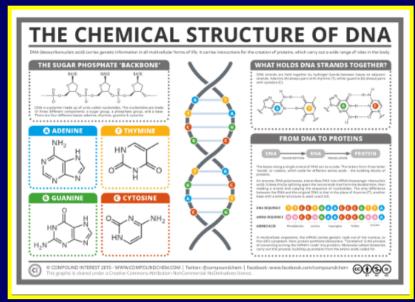
Calories from Fat 4


Five elements make up 97% of the mass of a human: <u>Carbon</u>, <u>Hydrogen</u>, <u>Oxygen</u>, <u>Nitrogen</u> and <u>Phosphorus</u>.

Element	% by mass in human body	Element	% by mass in human body	
Oxygen	65%	Iron	trace	
Carbon	18.5%	Zinc	trace	
Hydrogen	9.5%	Copper	trace	
Nitrogen	3.3%	Iodine	trace	
Calcium	1.5%	Manganese	trace	
Phosphorus	1.0%	Boron	trace	
Potassium	0.4%	Chromium	trace	
Sulfur	0.3%	Molybdenum	trace	
Sodium	0.2%	Cobalt	trace	
Chlorine	0.2%	Selenium	trace	
Magnesium	0.1%	Fluorine	trace	

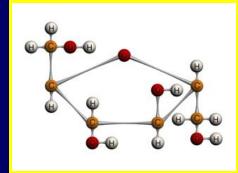

These five elements can combine to form organic molecules that are found in all living organisms



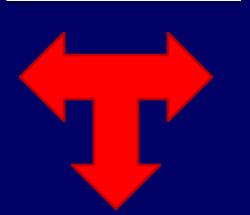

Saturated

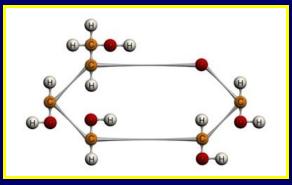
Unsaturated

Inorganic Versus Organic Organic molecules always contain <u>carbon</u>, <u>hydrogen</u>, and <u>oxygen</u> combined together.

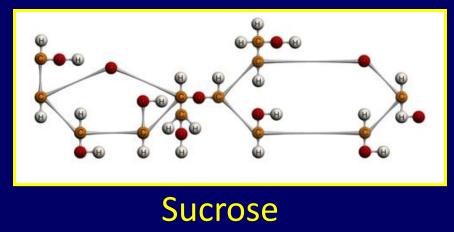

<u>Inorganic</u> molecules do not contain carbon, hydrogen, and oxygen combined together <u>Macromolecules</u> are large organic molecules that make up all living organisms

Four Groups of Macromolecules

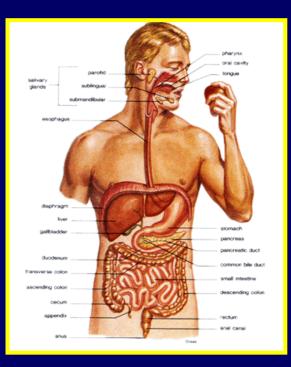

- 1. <u>Carbohydrates</u> Sugars and starches
- 2. <u>Lipids</u> Fats and Oils
- 3. Proteins Enzymes and Many Others
- 4. Nucleic Acids DNA and RNA


Each macromolecules is called a <u>polymer</u> which is a molecule made up of many smaller subunits called

<u>monomers</u>



Fructose



Glucose

Digestion

During digestion the polymers, from our <u>food</u>, are broken down into monomers.

The monomers are then absorbed by the <u>blood</u> stream and carried to cells in the body

In the <u>cells</u>, the monomers are assembled back into <u>polymers</u>

Each of the four macromolecule groups has a very specific monomer Monomer Polymer Carbohydrate Monosaccharides Lipids..... Fatty Acids Proteins <u>Amino Acids</u> Nucleic Acids Nucleotides