# Naming and Writing Formulas for Ionic Compounds 



## I Can Statements

At the end of this lesson, you should be able to say, with confidence:

- I can write chemical formulas and name ionic compounds, given a chemical formula


## lonic Compounds

## Compounds formed by ionic bonds are

 called ionic compounds and have different properties than their individual atoms.

Explosive Metal


Table Salt


Poisonous Gas

## Properties of Ionic Compounds

 lonic compounds form crystals

Sodium Chloride


## Properties of lonic Compounds

## lonic compounds dissolve easily in water.



Because the individual ions have a charge, they are attracted the charges in the water molecule and are easily separated or dissolved.

## lonic Compounds

## When ionic compounds dissolve in water, the charged ions can conduct electricity and are called electrolytes.

## $\mathrm{Na}+$

## $\mathrm{Cl}-$

K+


## Electrolytes

## Electrolytes are vital to human health.

Na+ and K+ ions are involved in nerve signals.

|  |
| :---: |
| = |
| - |



Ca+ ions cause your heart to pump blood and helps your heart maintain a rhythm.

## Ionic Bonds

## lonic compounds are formed when atoms exchange electrons, develop a charge, and oppositely charged ions form an ionic bond.



## Atoms with a Charge

## Atom develop a charge when they lose or gain electrons.



Charges can be either positive or negative.

## lons

## Atoms with a charge are called ions.



If an atom loses an electron, it will develop a positive charge.

If an atom gains an electron, it will develop a negative charge.

## Metals $\rightarrow$ Positive lons

Metals lose electrons and develop a positive change, in the process.

 प|11|

Nonmetals $\rightarrow$ Negative lons

Nonmetals gain
electrons and develop a negative charge, in the process.


## Oxidation Numbers

## The specific charge an atom develops is called its oxidation number.



## Oxidation Numbers

Oxidation numbers are always written as superscripts after the chemical symbol.

$$
\begin{array}{ccc}
\mathrm{Na}^{+1} & \mathrm{Ca}^{+2} & \mathrm{~B}^{+3} \\
\mathrm{~N}^{-3} & \mathrm{O}^{-2} & \mathrm{~F}^{-1} \\
\mathrm{~K}^{+1} & \mathrm{Mg}^{+2} & \mathrm{Al}^{+3}
\end{array}
$$

## Chemical Formulas

Chemical formulas are used to express they type of atoms and how many atoms are present in a compound.


## NaCl

1 Na atom
1 Cl atom

## Subscripts



Subscripts, written after the element, identify the number of atoms there are of each element.

## $\mathrm{H}_{2} \mathrm{O}$ <br> 2 Hydrogen atoms 1 Oxygen atom <br> The number 1 is not written in chemical formulas.

## Writing Formulas

## Binary ionic compounds

 have only two types of ions.
## NaCl

Even though the ions carry a charge, the compounds themselves, are neutral.

Therefore, the number of negative ions must equal the number of positive ions.

## Formula Writing Rules

1. Write the symbol and positive oxidation numbered element first (this will always be a metal)

## Magnesium Nitride

$\mathbf{M g}{ }^{+2}$

## Formula Writing Rules

2. Write the symbol of the element that has the negative oxidation number (this will always be a non-metal)

## Magnesium Nitride

$$
\mathrm{Mg}^{+2} \mathrm{~N}^{-3}
$$

Formula Writing Rules
3. Write oxidation numbers of each element, without the charge, as the subscript for the other element. (Criss Cross)

Magnesium Nitride $\mathrm{Mg}^{+2} \mathrm{Ng}_{2}^{\mathrm{N}_{2}^{-3}}$

## Formula Writing Rules

Once this is done, the compound will have the same amount of positive ions and negative ions. Magnesium Nitride $\mathrm{Mg}^{+2} \quad \mathrm{~N}^{-3}$

$$
\mathrm{Mg}_{3} \mathrm{~N}_{2}
$$

$$
3(+2)=+6 \quad 2(-3)=-6
$$

## Remember

## There are NO CHARGES in the final formula

$$
\begin{aligned}
& \mathrm{NaCl} \\
& \mathrm{Al}_{2} \mathrm{O}_{3}
\end{aligned}
$$

## Writing Names

1. Write the full name of the positive ion (This will always be the metal)

NaCl

## Sodium

2. Write the root name of the negative ion (This will always be the non-metal)

NaCl
Sodium Chlor

## Writing Names

3. Add the ending ide to the root of the second element

NaCl

## Sodium Chloride

## Endings for Non-Metals

| $\begin{aligned} & 15 \\ & \text { VA } \end{aligned}$ | $16$ <br> VIA | $17$ VIIA |
| :---: | :---: | :---: |
| $\begin{gathered} 7 \\ \stackrel{N}{N} \\ \text { Niltrogen } \\ 14.01 \end{gathered}$ | $\begin{gathered} 8 \\ 0 \\ \text { oxygen } \\ 16.00 \end{gathered}$ | $\begin{gathered} \mathbf{9} \\ \underset{F}{\text { Fuuorine }} \\ 19.00 \end{gathered}$ |
| $\mathbf{1 5}$ <br> $\mathbf{P}$ <br> Phosphorus <br> 30.97 | $\begin{gathered} 16 \\ \mathbf{S} \\ \text { Sulfur } \\ 32.07 \end{gathered}$ | $\begin{gathered} 17 \\ \text { Cl } \\ \text { Chlorine } \\ 35.45 \end{gathered}$ |
|  |  | $\begin{gathered} 35 \\ \mathbf{B r} \\ \text { Bromine } \\ 79.90 \end{gathered}$ |
|  |  | $\begin{gathered} 53 \\ \mathbf{I} \\ \text { Iodine } \\ 126.90 \end{gathered}$ |

## Nitride <br> Phosphide Oxide Sulfide Fluoride Chloride Bromide

 lodide
## The End



