Notes for Atmospheric Interactions

Radiant Energy

- Energy from the Sun travels to Earth as radiant energy in the form of electromagnetic waves
- Visible light waves is the only part of electromagnetic spectrum we can see
- White light - all colors combined - ROYGBIV
- Different wavelengths - red is the longest and violet is the shortest

Wave Behavior

- Reflected light waves bounce back off object
- Transmitted light waves travel through object
- Transparent - all light travels through
- Translucent - only some light travels through
- Absorbed light waves do not pass through or bounce off
- Opaque - no light travels through
- Pigments - chemicals in substances that absorb some colors of light and reflect others. (We see reflected light).

Light Refraction

- The bending of light as it changes speed when traveling from one medium to another (example - from air to water)
- As light changes mediums, the different wavelengths of colored light bend at different rates. Red bends the least and violet bends the most.
- When light enters a prism, the different wavelengths of light refract or bend and separate into the colors of the rainbow.
- Rainbows occur when light passes through water droplets in the air and the different wavelengths of light are refracted and separated.
Scattering of Light
- Occurs when light waves strike atoms in the atmosphere and are scattered in all different directions.

Scattering of Light

- Clouds - large water droplets scatter all colors of light equally so they appear white
- Air molecules, nitrogen and oxygen, are so small that they scatter the smaller light waves more, so the sky appears blue.
- Violet light waves are absorbed in the upper atmosphere
- Red, yellow, and orange light remain together, so when we look at the Sun, it appears yellowish white.
- Sunrises and sunsets - when the sunlight shines through the lower atmosphere, it passes through larger water molecules and dust particles, so the red, orange, and yellow light waves are scattered more.

