Polyatomic Ionic Compounds

0
- <u>s</u> : 0
Ó

Sulfate (SO₄)⁻²

Nitrate (NO₃)⁻ Carbonate (CO₃)⁻² Essential Standard 2.2 Understand chemical bonding and chemical interactions.

Learning Objective 2.2.2

Predict chemical formulas and names for simple compounds based on knowledge of bond formation and naming conventions.

Can Statements

At the end of this lesson, you should be able to say, with confidence:

- I can write chemical formulas for polyatomic ionic compounds
- I can name polyatomic ionic compounds given their chemical formulas

Polyatomic lons <u>Polyatomic ions</u> contain a <u>group</u> of positively or negatively charged atoms.

The prefix poly means many, so polyatomic means many atoms.

Polyatomic lons All the polyatomic ion groups you will work with in this class, are on this chart.

Polyatomic Ions			
NH_4^+	(NH ₄)+	Ammonium	
$C_2H_3O_2^{-}(C_2H_3O_2)^{-}$		Acetate	
CIO ₃ ⁻	(CIO ₃) ⁻	Chlorate	
NO_3^-	(NO ₃) ⁻	Nitrate	
OH⁻	(OH) ⁻	Hydroxide	
CO ₃ ²⁻	(CO ₃) ⁻²	Carbonate	
SO ₄ ²⁻	(SO ₄) ⁻²	Sulfate	
PO ₄ ³⁻	(PO ₄) ⁻³	Phosphate	

Polyatomic lons

Even though the group contains a <u>charge</u> and can form an ionic bond, the atoms within the group are joined together by covalent bonds.

(NH ₄)+	(CIO ₃) ⁻	(SO ₄) ²⁻

Notice that all the elements involved are <u>non-metals</u>.

Polyatomic Compounds When writing formulas, keep the polyatomic ion group in parenthesis and treat it as one binary compound. **Calcium Phosphate** Calcium **Ca**⁺² Phosphate $(PO_4)^{3-}$ $Ca_3(PO_4)_2$

Polyatomic Compounds Any subscript within the parentheses cannot be changed. **Calcium Phosphate** Calcium **Ca**⁺² (PO₄)³⁻ Phosphate $Ca_3(PO_4)_2$

1. Write the symbol and positive oxidation numbered element or group first

Ammonium Sulfate

(NH₄)⁺¹

* In this case, ammonium is one of the polyatomic ion groups, so just write the group with the oxidation number as a superscript.

2. Write the symbol of the element or group that has the negative oxidation number or charge

Ammonium Sulfate

(SO₄)⁻²

3. Write oxidation numbers of each element or group, minus the charge, as the subscript for the other element. (Criss Cross)

Ammonium Sulfate

 $(NH_4)^{+1}$ $(SO_4)^{-2}$ $(NH_4)_2(SO_4)_1^{-2}$

Remember that we don't write 1's as subscripts and if there is only one of that polyatomic group, the parentheses are often dropped.

> Ammonium Sulfate $(NH_4)^{+1}$ $(SO_4)^{-2}$ $(NH_4)_2SO_4$

When the subscripts are equal, that means there is still a 1:1 ratio, so the subscripts are often dropped.

Magnesium Carbonate Mg⁺² (CO₃)⁻² MgCO₃ Naming Polyatomic lons 1.Write the name of the positive ion or polyatomic group K2SO4

Potassium

2. Write the name of the negative ion or polyatomic group

K₂SO₄ Sulfate

Naming Polyatomic lons 3. Place the names together K2SO4 Potassium Sulfate

Just use the chart for the names each time.

Polyatomic Ions			
NH_4^+	(NH ₄)+	Ammonium	
$C_2H_3O_2(C_2H_3O_2)$		Acetate	
CIO ₃ ⁻	(CIO ₃) ⁻	Chlorate	
NO_3^-	(NO ₃) ⁻	Nitrate	
OH⁻	(OH) ⁻	Hydroxide	
CO ₃ ²⁻	(CO ₃) ⁻²	Carbonate	
SO ₄ ²⁻	(SO ₄) ⁻²	Sulfate	
PO ₄ ³⁻	(PO ₄) ⁻³	Phosphate	

The End

