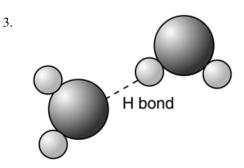

Name: ______ Date: _____


- 1. Which is a unique characteristic of the bonding between metal atoms?
 - A. Atoms require additional electrons to reach a stable octet.
 - Atoms must give away electrons to reach a stable octet.
 - C. Atoms share valence electrons only with neighboring atoms to reach a stable octet.
 - D. Delocalized electrons move among many atoms creating a sea of electrons.
- 2. The model below shows the crystalline structure of sodium chloride.

Sodium Chloride

Which statement *best* describes the behavior of the valence electrons as they form chemical bonds?

- A. Each sodium and chlorine atom shares one electron between both atoms.
- B. Each sodium and chlorine atom shares two electrons between both atoms.
- C. One electron from each sodium atom is transferred to each chlorine atom.
- D. Two electrons from each chlorine atom are transferred to each sodium atom.

Water Molecules

The model illustrates hydrogen bonding found in water. This attraction between water molecules is the result of water's—

- A. ionic bonding.
- B. polar covalent bonding.
- C. positively charged atoms.
- D. negatively charged atoms.
- 4. How can two different nonmetals form a compound?
 - A. by sharing protons
 - B. by sharing electrons
 - C. by transferring protons
 - D. by transferring electrons
- 5. Which type of bond is responsible for atoms of pure gold to remain bonded?
 - A. covalent
- B. hydrogen
- C. ionic
- D. metallic

6. In a water molecule, the oxygen atom has a slightly negative charge and the hydrogen atoms have a slightly positive charge.

This charge difference gives rise to which type of bonds between water molecules?

- A. Ionic bonds
- B. Hydrogen bonds
- C. Single covalent bonds
- D. Double covalent bonds

- 7. Which compound is *most likely* formed using covalent bonds?
 - A. CO₂ B. K₂O C. KBr D. CaBr₂

8.	1	Group				Periodic Table of Elements														
			1			1														
		1	1 H Hydrogen 1.01	2											13	14	15	16	17	Pelium 4.00
		2	3 Li Lithium 6.94	Be Beryllium 9.01											5 B Boron 10.81	Carbon 12.01	7 N Nitrogen 14.01	Oxygen 16.00	9 F Fluorine 19.00	10 Ne Neon 20.18
		3	Na Sodium	Mg Magnesium	3	4	5	6	7	8	9	10	11	12	Al Aluminum	Silicon	Phosphorus	16 S Sulfur	17 Cl Chlorine	18 Ar Argon
	Period		22.99 19	24.31	21	22	23	24	25	26	27	28	29	30	26.98	28.09 32	30.97	32.07 34	35.45 35	39.95 36
		4	K	Ča	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	Ås	Se	Br	Kr
		·	Potassium 39.10	Calcium 40.08	Scandium 44.96	Titanium 47.88	Vanadium 50.94	Chromium 52.00	Manganese 54.94	Iron 55.85	Cobalt 58.93	Nickel 58.69	Copper 63.55	Zinc 65.39	Gallium 69.72	Germanium 72.61	Arsenic 74.92	Selenium 78.96	Bromine 79.90	Krypton 83.80
			37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
		5	Rb Rubidium 85.47	Strontium 87.62	Yttrium 88.91	Zr Zirconium 91.22	Niobium 92.91	Molybdenum 95.94	Tc Technetium 98.00	Ruthenium 101.07	Rh Rhodium 102.91	Palladium 106.42	Ag Silver 107.87	Cd Cadmium 112.41	In Indium 114.82	5n Tin 118.71	Sb Antimony 121.76	Tellurium 127.60	lodine 126.91	Xe Xenon 131.29
			55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
		6	Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
			Cesium 132.91	Barium 137.33	Lanthanum 138.91	Hafnium 178.49	Tantalum 180.95	Tungsten 183.85	Rhenium 186.21	Osmium 190.20	Iridium 192.22	Platinum 195.08	Gold 196.97	Mercury 200.59	Thallium 204.38	Lead 207.20	Bismuth 208.96	Polonium 208.98	Astatine 210.00	Radon 222.00
			87	88	89	104	105	106	107	108	109									
		7	Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									
			Francium 223.00	Radium 226.00	Actinium 227.03	Rutherfordium (261)	Dubnium (262)	Seaborgium (263)	Bohrium (264)	Hassium (265)	Meitnerium (268)									

Leroy combines magnesium (Mg) and fluorine (F).

Based on the periodic table, which statement describes the interaction of these two elements?

- A. Mg is a metal and F is a nonmetal that forms an ionic bond.
- B. Mg is a nonmetal and F is a metal that forms an ionic bond.
- C. Mg is a metal and F is a metal that forms a covalent bond.
- D. Mg is a metalloid and F is a nonmetal that forms a covalent bond.

- 9. Which of the following occurs in an ionic bond?
 - A. Two ions share protons.
 - B. Two ions share electrons.
 - C. Similarly charged ions attract.
 - D. Oppositely charged ions attract.

10. The illustration below shows two atoms of a fictitious element (M) forming a diatomic molecule.

What type of bonding occurs between these two atoms?

- A. covalent
- B. ionic
- C. nuclear
- D. polar